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Abstract. In this paper, we propose an indexing method for approx-
imate nearest neighbor search of binary features. Being different from
the popular Locality Sensitive Hashing (LSH), the proposed method
construct the hash keys by an online learning process instead of pure
randomness. In the learning process, the hash keys are constructed with
the aim of obtaining uniform hash buckets and high collision rates, which
makes the method more efficient on approximate nearest neighbor search
than LSH. By distributing the online learning into the simultaneous
localization and mapping (SLAM) process, we successfully apply the
method to SLAM relocalization. Experiments show that camera poses
can be successfully recovered in real time even there are tens of thou-
sands of landmarks in the map.

1 Introduction

simultaneous localization and mapping (SLAM) has been extensively studied in
both robotics and computer vision [1, 2]. One important module in SLAM is the
relocalization, i.e. the recovery of the camera pose after tracking failure. Since
the camera pose can be estimated using correspondences between 3D points in
the map and 2D features in the image, the key problem in the relocalization is
to obtain the 3D-2D correspondences.

The problem of obtaining 3D-2D correspondences is typically treated as the
problem of feature matching: during the mapping process, each 3D point in the
map is associated with some image features; in the relocalization process, the
same type of features are extracted from the image and matched against those
of the 3D points. Some existing works [3–5] on image-based localization employ
robust image features such as SIFT [6] and Daisy [7] in their systems. They
are able to localize an image accurately even the scene contains millions of 3D
points. However, due to the expensive computation of these features, they are
not well suited for SLAM relocalization in which real time performance is of
critical importance. Williams et al. [8] propose a relocalization approach using
the adapted random ferns [9] to collect 3D-2D correspondences. While being
performed in real time, their approach can hardly be extended to large scenes
due to the large memory footprint. Recently, Straub et al. [10] have designed a
relocalization module based on binary features [11–13]. Their system is demon-
strated on a scene containing tens of thousands 3D points and achieves near real
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time performance due to two attractive characteristics of binary features: a)they
are extracted faster than SIFT like features by two orders of magnitude; b)the
distance of two binary features can be computed by using fast SSE instructions.
To further speed up feature matching, Straub et al. also use Locality Sensitive
Hashing [14] to perform approximate nearest neighbor(ANN) search.

In this paper, we demonstrate a relocalization module which employs bina-
ry features. Being different from [10], we propose for ANN search an indexing
method that is more efficient than LSH. The higher efficiency is achieved through
an online learning process. Initially, the hash keys are randomly generated as in
LSH, and then they are adapted incrementally during the SLAM process with
the objective to attain more uniform hash buckets and higher collision rates.
Experiment results show that using the proposed indexing method takes less
time than using the original LSH to reach the same search accuracy, or reaches
higher accuracy by taking the same time.

The rest of this paper is organized as follows: Section 2 gives an overview
of the entire SLAM system; Section 3 introduces the relocalization module and
the proposed indexing method; Experiment results are shown in Section 4 and
Conclusions are drawn in Section 5.

2 System Overview

Our SLAM implementation is adapted from PTAM [2]. It consists of two thread-
s, i.e. the background mapping thread and the foreground tracking thread.
The mapping thread collects keyframes from the video sequence and performs
structure from motion to build a map of the environment. The process is done
incrementally. When a new keyframe is inserted, FAST corners [15] are first ex-
tracted, and then some of the corners are identified as the observations of the
old 3D points, while the remaining are matched against the corners in the n-
earest keyframes to triangulate new 3D points. The tracking thread estimates
the camera pose of each frame by tracking the 3D points in the map. Under the
assumption of continuous camera motion, the observations of the 3D points can
be searched around their predicted locations. Once the observations are found,
i.e. the 3D-2D correspondences are established, the camera pose is trivially es-
timated by using a non-linear optimization routine. During the tracking process,
tracking failure may happen due to sudden changes of the illumination, full oc-
clusions, or extreme motion blur. Then a relocalization module is implemented
to re-estimate the camera pose and restart the tracking process.

3 Relocalization

The aim of the relocalization is to estimate the camera pose of an image after
the tracking failure. Being the same as in the tracking process, the core problem
in the relocalization is also to find the observations of the 3D points, except that
the observations can no longer be predicted from the camera poses of previous
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Fig. 1. An example of indexing a database feature. Each hash key consists of two
randomly selected bits.

frames. Once the observations are found, the camera pose can be estimated by
RANSAC [16] and Perspective-n-Points algorithms.

Obtaining the observations of the 3D points is treated as the problem of
feature matching. In the mapping process, whenever the observation of a 3D
point is found in a keyframe, a binary descriptor at this observation is extracted.
Consequently, each 3D point corresponds to a set of binary descriptors which
are referred to as database features. In an image being relocalized, Fast corners
[15] along with their binary descriptors, referred to as query features, are first
extracted. Then, the top two nearest neighbors of each query are searched among
the database features. If the ratio test [6] is past, the nearest neighbor is deemed
as the match. To be efficient, we use an indexing method to perform fast ANN
search instead of brute-force search. The indexing method is more efficient than
LSH due to an online learning process, which is presented below after a brief
description on LSH.

3.1 LSH for ANN Search of Binary Features

LSH uses hash keys to index a feature. It assigns an index value to the feature
under each key. When performing ANN search, database features are stored in
multiple hash tables. Each hash table corresponds to a hash key. The designated
table entry, i.e. hash bucket, in which a database feature should be stored is
determined by the index value. Given a query feature, the index values are first
assigned and the corresponding buckets are found in the same way as database
features. Then a linear search is performed among the database features in these
buckets to retrieve the approximate nearest neighbors. For binary features, the
hash key is simply a set of bits randomly selected from the descriptor bits.
Consequently, a binary code can be assigned to a feature by concatenating the
values at these bits, and the index value of the feature is the integer converted
by the binary code. Fig. 1 gives a simple example on how a database feature is
indexed and stored in the hash tables.
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3.2 The Proposed Indexing method

There are two factors closely related to the efficiency of the indexing scheme for
ANN search: the distribution of the bucket sizes and the collision rate of matched
feature pairs. The size of a bucket indicates the number of the database features
stored in the bucket. Usually, the more uniform the bucket sizes are, the faster
ANN search will be, which have been noticed by Rublee et al. [12]. In this paper
(see analysis below), we illustrate that maintaining uniform bucket sizes is equiv-
alent to minimizing the total ANN search time. The collision rate of matched
feature pairs is the probability of that two matched features collide in the same
bucket. Higher collision rate leads to higher search accuracy. With both factors
being considered, our indexing method aims to attain uniform buckets and high
collision rates, so that ANN search can be performed fast and accurately. We
reach this aim through a learning process, in which the bits composing the hash
keys are selected to minimize a corresponding cost function. In the remainder of
the section, we present the learning process together with the derivation of the
cost function.

To alleviate the latency in the system and handle the ever-changing set of
database features, the bit selection is distributed into the SLAM process. Initial-
ly, the bits composing each hash key are selected randomly, as in LSH. Whenever
a new keyframe is inserted and the set of the database features is updated, one bit
of each hash key is re-selected to minimize the cost function. Then the database
features are re-indexed using the new hash keys.

Recalling the two factors that affect the efficiency, the cost function should
contain terms about the uniformity of the bucket sizes and the collision rate:

The uniformity of the bucket sizes. Let the normalized bucket sizes of
a hash table be {sn, n = 1, 2, ..., N} subject to

∑
sn = 1, where N is the total

number of buckets, then the extent to which the bucket sizes are uniform can be
expressed by

u =

N∑
n=1

(sn −
1

N
)
2

=

N∑
n=1

s2n −
1

N
. (1)

The smaller u is, the more uniform the bucket sizes are. This expression is
well compatible with the relation between the uniformity of the bucket sizes
and the speed of ANN search. Since the time cost of the linear search in the
buckets dominates the ANN search process, and under the assumption that the
query features have similar distribution to the database features, the time cost is
proportional to

∑N
n=1 s

2
n. As only one bit at a time is re-selected, the uniformity

can also be expressed by the form

u′ =

∑N
n=1 s

2
n∑N/2

m=1 s̃
2
m

, (2)

where {s̃m,m = 1, 2, ..., N2 } are constant, representing the normalized bucket
sizes of the hash table which is obtained by indexing the database features with
a key consisting of the unchanged bits. It can be verified that the value of u′
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belongs to [0.5 1]. u′ = 0.5 indicates that with the newly selected bit in the hash
key, the time cost of the linear search can be reduced by a half compared to with
only the unchanged bits in the hash key. While u′ = 1 indicates that the newly
selected bit does not bring any time saving. In the cost function, the term about
the uniformity is set as 1

1−u′ to encourage a small u′ and to avoid the situation
that u′ = 1.

The collision rate. The collision rate of matched feature pairs is actually
the probability that two matched features coincide with each other at all bits of
the hash key. Refer to the probability that two matched features coincide at a
certain bit as the stability pc of the bit, then according to the principle of greedy
algorithms, the most stable one is preferred when selecting a bit for the hash
key. Thus the cost term about the collision rate is simply set as 1−pc. Since the
features of a 3D point are actually the matches of each other, matched feature
pairs can be easily obtained in the database and pc can be estimated by making
statistics on these pairs.

Given the above two terms about the collision rate and the uniformity, the
cost function C reads as:

C = λ(1− pc) +
1

1− u′
, (3)

where λ is a preset weight.

Algorithm 1 Bit Selection

Input: HK = {bs1 , ..., bsk , ..., bsK}, with bsk being re-selected; F, all the database
features.
begin

Remove bsk from HK to get H̃K = {bs1 , ..., bsK};
Index F using H̃K ;
Count the bucket sizes {s̃m,m = 1, 2, ..., N

2
};

Generate 40 random numbers{r1, r2, ..., r40},
ri ∈ [1 D];
Compute the stability of each bri ;

for i=1; i≤40; i++; do
Replace bsk in HK with bri to get H′

K ;
Index F using H′

K ;
Compute the cost function C;

end
Select r∗ from {ri} so that C is minimized;
Replace bsk with br∗ in HK ;

end
Output: HK = {bs1 , ..., br∗ , ..., bsK}.

For a better understanding of the proposed method, the process of selecting
one bit for a hash key is summarized in Algorithm 1. The hash key is denoted
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as HK = {bs1 , bs2 , ..., bsK}, where bsk is the skth bit of the descriptor, sk ∈ [1 D]
and D the length of the descriptor.

Notes on the implementation. As can be seen from Algorithm 1, the
time cost of the bit selection process is linear with the number of the database
features, namely the number of the elements in F. To make Algorithm 1 be
scalable, we actually use only a subset, which is randomly composed and has
up to 80,000 elements, of F in Algorithm 1. We find this strategy brings about
a constant time cost for the bit selection process while retaining the ability
to discover ’good bits’, i.e. the bits producing uniform bucket sizes and high
collision rates.

To further reduce the training time, we perform the bit selection process on
not all but a half of the hash keys when a new keyframe is inserted, and the
two halves are selected in turn. This strategy would slow down the discovering
of good bits but effectively reduces the system latency.

4 Experiments

In this section, we first evaluate the efficiency of the proposed indexing method on
ANN search, and then show the comprehensive performance of the relocalization
module. The entire system is implemented in C++ and runs on a laptop with
an Intel Core i3-2310 2.1GHz CPU. The binary feature employed in the system
is BRISK [13].

4.1 The ANN Search Efficiency of The Indexing Method

Dataset We construct a dataset to evaluate the ANN search efficiency of the
proposed indexing method. We first take a long video containing 12,821 frames
around a building, and then run the SLAM system described in Section 2 on
this video, from which 293 keyframes are extracted and 37,641 3D points along
with 175,207 BRISK descriptors are obtained. These descriptors will serve as
the database features in the experiment. To obtain query features with known
ground truth matches, we select 500 well tracked frames from the video and
reproject 400 visible 3D points on each of them. The binary descriptors at these
reprojections are extracted as query features. Consequently, in each of the 500
frames we have 400 query features of which the corresponding 3D points are
known.

Evaluation criterion The ANN search efficiency is demonstrated by the search
accuracy and the search time. For a query feature, if the obtained approximate
nearest neighbor corresponds to the same 3D point as itself, the ANN search
is deemed as successful. The search accuracy is then defined as the ratio of
successful ANN searches. The search time is simply the time cost of the whole
ANN search process.
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Fig. 2. The ANN search results of the original LSH and the the learned LSH. (a) The
results obtained by using 2 hash tables. (b) The results obtained by using 6 hash tables.
(c) The results obtained by using 10 hash tables.

Setups To demonstrate the advantage of the proposed indexing method, namely
the learned LSH, we compare the ANN search performance of the method to that
of the original LSH and the setups are listed below.

– Original LSH. Three configurations of the number of hash tables, i.e. 2,6
and 10 respectively, are used in the experiment. In each configuration the
length of the hash key ranges from 17 to 13, resulting in different search
accuracies and timings.

– Learned LSH. The configurations of the number of hash tables and the
length of the hash key are identical to the original LSH. Each hash key in
the learned LSH is the same as that in the Original LSH initially, and is
changed during the SLAM process. The final hash keys used for the ANN
search are the ones learned from all the 293 keyframes.

Results Fig. 2(a) to Fig. 2(c) demonstrate the ANN search results in terms
of search accuracies and search timings obtained by using 2, 6, 10 hash tables
respectively. It can be seen that under these configurations, the ANN search
performances of the learned LSH are consistently improved over the original
LSH. Using the learned LSH takes less time than using the original LSH to
reach the same search accuracy. For example, when 2 hash table is used, the
time cost can be reduced by about a half. These results indicate that the bit
selection process is effective. Rather than being randomly generated, better hash
keys can be learned by exploiting the features collected in the SLAM process. To
be noted that, since only real time performance is of interest, the comparisons
are performed in relatively low accuracy regions.

The evolution of the search efficiency. Since hash keys of the learned
LSH are changed incrementally during the SLAM process, we may want to know
how the search efficiency of the learned LSH evolves. To figure out this, some
experiments are carried out as follows. We stop the bit selection process after
k keyframes are inserted and then use the resulted hash keys to perform ANN
search for query features in the above dataset. The results are shown in Fig. 3(a),
from which we can see that the search efficiency roughly increases as k increases.
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Fig. 3. (a) The ANN search results of the learned LSH with hash keys learned from
the top k keyframes. 6 hash tables are used. (b) the ANN search results of the learned
LSH with different values of λ. 6 hash tables are used.

This is reasonable since as k increases, more bit selection processes are performed
to increase the chance of find good bits, and wider range of training data,i.e.
larger number of database features, is also available. It can also be seen from
Fig. 3(a) that as k increase to some extent, e.g. 70, the performance nolonger
improves. This result suggests that it is not necessary for endless learning and
we may stop the learning after enough bit selection processes are performed.

The choice of λ. There is a parameter λ in the cost function (Eq. 3) needed
to be determined. Fig. 3(b) shows its impact on the efficiency of the indexing
method. It can be found that either a too small value, e.g. 0, or a too big value
e.g. 20, degrades the search efficiency, and a moderate value is preferred. So in
this paper, we empirically set λ to be 12.

The timing of learning. The learning time cost is dominated by the bit
selection process. Benefited from the strategy described in Section 3.2, the time
cost of the bit selection process is constant. We use 10 hash tables with key
length of 14 and find that selecting one bit for a hash key takes about 53 ms
even the number of database features increases to 175207. Since we perform bit
selection on a half of the hash keys at a time, the learning time cost at a time
is about 260 ms. This time cost is favorable since the learning process runs on
the background thread and 260 ms is much less than the time interval, usually
several seconds, between two keyframes.

4.2 The Relocalization Performance

To evaluate the performance of the proposed relocalization module, we run this
module on two video segments and try to relocalize each frame of them. The
first video segment (V1) contains 8000 frames and is clipped from the video
which has been used in Section 4.1 to evaluate the efficiency of the indexing
method. The scene map involved in this segment contains 37,641 3D points and
175,207 database features. The second video segment (V2) is taken by moving
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Fig. 4. Left, the scene in which the second video segment is taken. Right, the scene in
which the first video segment is taken.

the camera above an office desk and contains 1063 frames. The map involved
in the second video segment is built by running SLAM on another video, from
which 31 keyframes are extracted and 4173 3D points along with 20,846 database
features are obtained. Fig. 4 gives a shot on the scenes and maps involved in the
two videos.

We follow the pipeline described in Section 3 to relocalize each frame of V1
and V2. Since the camera intrinsic parameters are fixed and have been calibrated
in advance, we use RANSAC and EPnP[17] followed by a non-linear optimization
to estimate the camera poses from 3D-2D correspondences. The relocalization
is deemed as successful if more than 12 inlier correspondences are found in the
RANSAC process. The learned LSH is used for ANN search in the process of
establishing 3D-2D correspondences. For comparison, the original LSH is also
used. In V1, both the original LSH and the learned LSH has 10 hash tables with
key length of 14, and the hash keys in the learned LSH are learned from all the
keyframes. In V2, the original LSH has 10 hash tables with key length of 14 and
the learned LSH has 10 hash tables with key length of 13. Again the hash keys
in the learned LSH are learned from all the keyframes.

Table 1. The relocalization results.

Video segments V1 V2

# query frames 8000 1063

# 3D points 37,641 4173

# database features 175,207 20,846

Indexing method Original LSH Learned LSH Original LSH Learned LSH

# relocalized frames 7832.0 7859.0 927.8 953.2

Timings (ms)

Corner detection 8.3 8.5 7.8 7.8

Descriptor extraction 8.3 8.3 10.03 10.03

ANN search 30.4 17.5 3.7 3.5

RANSAC 0.5 0.5 1.2 1.2

Total 48.3 35.9 24.8 24.6
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Comprehensive Results. Table 1 summarizes the relocalizaiton results
which are averaged over 5 repetitions to alleviate the effect of the randomness
in RANSAC. It is shown that in V1, 7859 frames out of 8000 frames,i.e. 98.2%
are successfully relocalized at a speed of the frame rate, which demonstrates the
good scalability of the relocalization module for large maps. Besides, due to the
higher efficiency of the learned LSH compared to the original LSH, the time cost
of ANN search can be reduced by 42%, and a slightly more,i.e. 0.3%, frames can
be successfully relocalized. In V2, the view point differences between the query
frames and the keyframes are larger than that in V1, thus a lower registration
rate, i.e. 89.6%, is obtained. Since the map in V2 is relatively small, the time
cost saving by using the learned LSH is not as prominent as that in V1. However
the improvement of the registration rate, 2.4%, is now more noticeable. This
improvement should also be ascribed to the higher efficiency of the learned LSH:
by taking the same time, using the learned LSH produces higher search accuracy
than using the original LSH.
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Fig. 5. The camera locations estimated by the relocalization module (the blue dots)
and the tracking module (the red dots). (a)Camera locations of the first video segment.
(b) Camera locations of the second video segment.

Relocalization accuracy. The aim of the relocalization is to restart the
tracking. If the camera pose of a frame obtained by the relocalization module is
close enough to the pose that should have been obtained by the tracking module,
the tracking usually restarts successfully. So the accuracy of the relocalization
should be measured by the differences between poses from the relocalization
and poses from the tracking. In real situations, the relocalization is performed
on frames suffering from tracking failure, and thus poses from the tracking can
not be obtained. To evaluate the relocalization accuracy, we instead run the
relocalization module on frames that are tracked without failure. Again, we use
V1 and V2 in which all frames can actually be well tracked. Fig. 5 depicts
the camera locations estimated by both modules. The black squares represent
two special camera locations from the tracking module, one of them is the initial
location and the other is the location farthest from the initial one. After dividing



Online Learning of Binary Feature Indexing 11

the average distance between the tracked locations and the relocalized locations
by the distance of the two special locations, we get a relative location error of
0.05% in v1 and 0.7% in v2. Defining the rotation error between two rotation
matrices R1 and R2 as the angle of the rotation R1R

T
2 , as in[4], we also get a

average rotation error of 0.25 degrees in v1 and 0.4 degrees in v2. These results
indicate that the relocalization is relatively accurate.

5 Conclusion

In this paper, we have presented a binary feature indexing method for real-time
SLAM relocalization. The core of the indexing method lies in that hash keys are
learned online with the aim of attaining uniform hash buckets and high collision
rates. By implementing the learning process on the background mapping thread
and activating it only when the map is updated, little latency is brought about
to the system. Experiments show that the proposed indexing method is more
efficient than LSH and the relocalization module is able to handle large maps
with tens of thousands of landmarks.
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